In 1967, Babcock Wilcox Española -present in the Spanish market since 1918- implemented its diversification policy by setting up a valve manufacturing division, which soon became one of the leading players on the international market, thanks to its engineering efforts, developing new designs to improve product reliability in the power generation sector (nuclear and conventional), petrochemical industry, oil & gas sectors and water works.

Babcock Valves has the expertise, the know-how and the industrial experience of a company with almost half a century of history behind it, and a legacy of over 1.200.000 valves installed all around the world.

At Babcock Valves our commitment to our customers is underlined by a combination of tradition and continuous innovation.

Our name is recognised around the world as a benchmark for reliability and service excellence, with hundreds of customers expressing their satisfaction with our supplies, taking advantage of the right performances of our valves for years.
ENGINEERED TO THE LIMIT

At Babcock Valves we use the latest software tools to develop and improve our own designs, to ensure the products we supply always comply and exceed the latest standards and international regulations.

Our engineering team can guarantee the quickest possible response to meet our customers’ requirements, anywhere in the world.

TECHNOLOGICAL BACKGROUND

Babcock has developed its own solid, high value-added, valve-manufacturing technology over a period of 40 years. Initial agreements with technology leaders were followed by the development of our own in-house engineering facilities, in compliance with the main regulations and standards, and by studying customer specifications and applying advanced design tools.

Know-how + Expertise = Babcock Valves
Babcock Valves has its own Research + Development + innovation Department (R+D+i) that works each and every day towards the same goal: how to improve our valves.

In doing so we use the latest software tools and technology to improve our own designs and develop new products, providing our customers with the best technical solutions and obtaining significant advantages over the competitors.

Babcock Valves’ designs are based on advanced computer simulations, which minimize the possibility of design shortcomings and deficiencies affecting our valves, thereby ensuring our products always meet the latest applicable standards and customer requirements.

We design our own range of products with special emphasis on safety, low maintenance, long service life and the highest quality, optimizing the entire production process to offer competitive prices.

Our R+D+i team guarantees the quickest response to meet our customer requirements with personalized service.
The manufacturing process at Babcock Valves is carefully controlled by our Q.A. staff, from receipt of purchase order to dispatch of the goods.

Each stage of the production process is conducted at own facilities or in cooperation with recognised and approved suppliers.

Casting quality, particularly in the case of alloys, special alloys and exotic materials, is guaranteed by working with foundries equipped with the most advanced production systems plus the Non-Destructive Tests required for each piece.

Precision machining, including processes such as valve seat and disc lapping, welding or surface hardfacing, are fully controlled by our experienced staff, ensuring that all valve components reach the assembly stage in perfect working condition.

All valves manufactured by Babcock Valves are fully tested at our wide range of testing benches.

Where required, any painting system can be applied at our facilities.

Our goal is to produce zero defects and long-life valves.
With more than 1.200.000 valves installed all around the world, our commitment is to provide our customers the very best after sales service.

Therefore, we are ready at Babcock Valves to supply a full range of guaranteed spare parts for our entire product range, covering all of our products, both old and new designs.

Our specialized technical staff is available for on-site maintenance and/or technical support such as plant’s shutdown maintenance.

In addition to this, we provide analysis & trouble-shooting solutions to establish the causes of valve failures, valve accessories, related technical equipment, customized maintenance proposals, valve type selection, design alternatives advice, assessment of pipeline and fluid influence over valves and technical advice to improve valve operation.

Finally, training on Product Use & Maintenance for professionals is also into our abilities.
To guarantee high levels of quality for all of our products, our Quality Assurance Department implements a rigorous control and testing system throughout the manufacturing process. Moreover, Babcock Valves keeps an operational quality control and assurance manual that enables us to maintain optimum quality levels.

All of our products are tested during the design phase and after assembly, prior to shipment. Testing includes cryogenic tests, hot cycle tests, multi-axis vibration tests, aging tests, flow and pressure tests, seismic resistance tests, valve hammer-impact tests, actuator tests and others.

Our valves are designed, manufactured and inspected, in accordance with the most relevant international standards, such as:

- **API** (American Petroleum Institute)
- **ANSI** (American National Standards Institute)
- **AWWA** (American Water Works Association)
- **DIN** (Deutsche Norm)
- **JIS** (Japanese Industrial Standards)
- **BS** (British Standards)
- **AFNOR** (Association Française de Normalisation)
- **MSS** (Manufacturers Standardization Society)
- **ISO** (International Standards Organization)
- **UNE** (Spanish Standard)
- **EAC** (Eurasian Conformity)
Product Range
Babcock’s Valves

Gate Valves
- Wedge Gate
- Double Disc Gate
- Parallel Slide Disc
- Through-Conduit Gate

Globe Valves
- Angle Globe
- Y-Pattern Globe
- Y-Angle Globe

Check Valves
- Swing Check
- Tilting Disc Check
- Lift Check
- Dual Plate Check

Butterfly Valves
- Concentric Butterfly
- Double Excentric Butterfly
- Triple Excentric Butterfly

Ball Valves
- Floating Ball
- Trunnion-Mounted
- Split Body
- Fully Welded

Stop-check Valves
- Globe
- Angle
- Y-Globe
- Y-Angle

Special Valves
- Hydrotest
- Quick Closing Check
- Double Disc Gate
- Parallel Slide Gate
- Bellow Sealed
- Nuclear Certified
- Stop-Check Globe y Pattern
Gate Valves :: Product Range

Code: 00
- **Type:** Through-conduit
- **Bonnet:** Bolted
- **Sizes:** 2” - 60”
- **ANSI Class:** 150-900

Code: 10
- **Type:** Through-conduit
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500

Code: 22
- **Type:** Wedge Gate
- **Bonnet:** Bolted
- **Sizes:** 1/2” - 72”
- **ANSI Class:** 150-2500

Code: 25
- **Type:** Wedge Gate
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500

Code: 82
- **Type:** Double disc
- **Bonnet:** Bolted
- **Sizes:** 2” - 72”
- **ANSI Class:** 150-900

Code: 84
- **Type:** Wedge Gate Cryogenic
- **Bonnet:** Bolted
- **Sizes:** 2” - 48”
- **ANSI Class:** 150-900

Code: 87
- **Type:** Parallel Slide
- **Bonnet:** Bolted
- **Sizes:** 2” - 48”
- **ANSI Class:** 150-900

Code: 89
- **Type:** Parallel Slide
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500

Code: 88
- **Type:** Parallel Slide with follower eye
- **Bonnet:** Bolted
- **Sizes:** 2” - 72”
- **ANSI Class:** 150-900

Code: 25
- **Type:** Wedge Gate
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500
Our Glove Valves can be supplied mounting four different kinds of discs, as can be seen below.
Check Valves :: Product Range

- **Code:** 42
 Type: Swing Check
 Bonnet: Bolted
 Sizes: 1/2" - 48"
 ANSI Class: 150-2500

- **Code:** 45
 Type: Swing Check
 Bonnet: Pressure Seal
 Sizes: 2" - 48"
 ANSI Class: 600-4500

- **Code:** 02
 Type: Tilting Disc
 Bonnet: Bolted
 Sizes: 2" - 48"
 ANSI Class: 150-900

- **Code:** 04
 Type: Horizontal Lift Check
 Bonnet: Pressure Seal
 Sizes: 2" - 48"
 ANSI Class: 600-4500

- **Code:** 09
 Type: Horizontal Lift Check
 Bonnet: Threaded and Welded
 Sizes: 1/2" - 3"
 ANSI Class: 150-4500

- **Code:** 52
 Type: Y-Lift Check
 Bonnet: Bolted
 Sizes: 1/2" - 24"
 ANSI Class: 150-2500

- **Code:** 06
 Type: Angle Lift Check
 Bonnet: Pressure Seal
 Sizes: 2" - 24"
 ANSI Class: 600-4500

- **Code:** 54
 Type: Y-Piston Check (0 Leakage)
 Bonnet: Threaded and Welded
 Sizes: 1/2" - 3"
 ANSI Class: 150-4500

- **Code:** 51
 Type: Y-Piston Check
 Bonnet: Threaded and Welded
 Sizes: 1/2" - 3"
 ANSI Class: 150-4500
Code: 05
Type: Tilting Disc
Bonnet: Pressure Seal
Sizes: 2” - 48”
ANSI Class: 600-4500

Code: 07
Type: Horizontal Lift Check
Bonnet: Bolted
Sizes: 1/2” - 24”
ANSI Class: 150-900

Code: 55
Type: Y-Lift Check
Bonnet: Pressure Seal
Sizes: 2” - 24”
ANSI Class: 600-4500

Code: 01
Type: Angle Lift Check
Bonnet: Bolted
Sizes: 2” - 48”
ANSI Class: 150-900

Code: 08
Type: Hydrotest Check
Bonnet: Pressure Seal
Sizes: 2” - 48”
ANSI Class: 600-4500

Code: 44
Type: Hydrotest Check
Bonnet: Bolted Bonnet
Handling: OS&Y
Sizes: 2” - 48”
ANSI Class: 150-900

Code: 43
Type: Dual Plate Wafer Check
Sizes: 2” - 48”
ANSI Class: 150-600
Butterfly Valves :: Product Range

Code: 101
Type: Triple Eccentric
Sizes: Up to 200”
ANSI Class: 150-2500

Code: 99
Type: Concentric
Sizes: Up to 200”
ANSI Class: 150-600

Code: 100
Type: Double Eccentric
Sizes: Up to 200”
ANSI Class: 150-2500
Ball Valves :: Product Range

Code: BFI
Type: Floating-Ball
Side Entry
One Piece Body
Sizes: 2" - 3"
ANSI Class: 150-900

Code: BFR
Type: Floating Ball
Side Entry
Threaded & Sealed
Sizes: 1/2" - 12"
ANSI Class: 150-900

Code: BGA
Type: Trunnion-Mounted
Side Entry
Bolted Body
Sizes: 1/2" - 3"
ANSI Class: 150-900

Code: BGS
Type: Trunnion-Mounted
Welded Body
Sizes: 2" - 60"
ANSI Class: 150-900

Code: BGT
Type: Trunnion-Mounted
Top Entry
Sizes: 2" - 60"
ANSI Class: 150-1500
Special Valves :: Product Range

Hydrotest Check
- **Code:** 08
- **Type:** Hydrotest Check
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 36”
- **ANSI Class:** 600-1500

Hydrotest Check
- **Code:** 44
- **Type:** Hydrotest Check
- **Bonnet:** Bolted
- **Sizes:** 2” - 48”
- **ANSI Class:** 150-900

Steam Extraction Quick Closing No Return
- **Code:** 42
- **Type:** Steam Extraction Quick Closing No Return
- **Bonnet:** Bolted/Pressure Seal
- **Sizes:** Up to 64”
- **ANSI Class:** 150-2500

Parallel Slide Gate
- **Code:** 87
- **Type:** Parallel Slide Gate
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 150-900

Parallel Slide Gate
- **Code:** 86
- **Type:** Parallel Slide Gate with follower eye
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500

Bellows Seal Needle
- **Code:** 37
- **Type:** Bellows Seal Needle
- **Bonnet:** Threaded & Welded
- **Sizes:** 1/2” - 3”
- **ANSI Class:** 150-600

Angle Needle
- **Code:** 96
- **Type:** Angle Needle
- **Bonnet:** Pressure Seal
- **Sizes:** 2” - 48”
- **ANSI Class:** 600-4500

Angle Needle
- **Code:** 98
- **Type:** Angle Needle
- **Bonnet:** Bolted
- **Sizes:** 2” - 48”
- **ANSI Class:** 150-900
Code: 85
Type: Double Disc Gate
Bonnet: Pressure Seal
Sizes: 2” - 48”
ANSI Class: 600-4500

Code: 82
Type: Double Disc Gate
Bonnet: Bolted
Sizes: 2” - 72”
ANSI Class: 150-900

Code: 88
Type: Parallel Slide Gate with follower eye
Bonnet: Bolted
Sizes: 2” - 60”
ANSI Class: 150-900

Code: 78
Type: Bellows Seal Globe
Bonnet: Bolted Bonnet
Sizes: 2” - 24”
ANSI Class: 150-600

Code: 77
Type: Bellows Seal Y-Globe
Bonnet: Threaded & Welded
Sizes: 1/2” - 3”
ANSI Class: 150-600

Code: 93 IBD/CBD
Type: Angle Needle
Bonnet: Threaded and Welded
Sizes: 1/2” - 12”
ANSI Class: 150-4500

Code: 14
Type: Y-Angle Globe/Stop-Check
Bonnet: Pressure Seal
Sizes: 2” - 24”
ANSI Class: 600-4500

Code: 101
Type: Triple Eccentric High Performance Butterfly
Sizes: Up to 200”
ANSI Class: 150-2500
Accessories and Special Equipment

Babcock Valves can supply its products with any kind of actuator system:

- Impactor
- Pneumatic
- Gas over-oil
- Others

- Electric
- Hydraulic
- Manual with bevel or spur gear

In addition to our own or third party products and technologies adapted to our own designs. Moreover, we are also able to supply any type of accessory, from stem extensions and chain wheels to position indicators with dashpot and counterweight in check valves. For further information contact our sales team at info@babcockvalves.com
Materials

<table>
<thead>
<tr>
<th>MATERIAL GROUP</th>
<th>COMMON NAME</th>
<th>MATERIAL TYPE</th>
<th>CASTING SPEC. EQUIVALENT</th>
<th>FORGING SPEC.</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel</td>
<td>CS</td>
<td>C-Mn-Fe</td>
<td>A 216-WCB / WCC</td>
<td>A105N</td>
<td>General non-corrosive service from -20°F (-29°C) to 800°F (427°C)</td>
</tr>
<tr>
<td>Low Temperature Carbon Steel</td>
<td>LTCS</td>
<td>C-Mn-Fe</td>
<td>A352-LC1, A352-LCB, A352-LCC</td>
<td>A 350-LF2</td>
<td>General non-corrosive service from -50°F (-46°C) to 650°F (340°C), LF2 to 800°F (427°F)</td>
</tr>
<tr>
<td>Low Temperature Alloy Steel</td>
<td>Nickel Steel</td>
<td>3.1/2Ni</td>
<td>A352-LC3</td>
<td>A 350-LF3</td>
<td>-150°F (-101°C) to 650°F (340°C)</td>
</tr>
<tr>
<td>Alloy Steel</td>
<td>Moly Steel</td>
<td>C-1/2Mo</td>
<td>A217-WC1</td>
<td>A182-F1</td>
<td>Up to 875°F (468°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A217-WC6, A217-WC9, A217-CS</td>
<td>A182-F11 cl2</td>
<td>Up to 1100°F (593°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A217-C12, A217-C12A</td>
<td>A182-F22 cl3</td>
<td>Up to 1100°F (593°C), HP steam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A182-F5a</td>
<td>High temp, refinery service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A182-F9</td>
<td>High temp, erosive refinery service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A182-F91</td>
<td>High pressure steam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A182-F92</td>
<td>High temp, erosive refinery service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04% min. carbon for temp. >1000°F (538°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Up to 800°F (427°C)</td>
</tr>
<tr>
<td></td>
<td>300 series S.Steel</td>
<td>304L, 18Cr-9Ni, 304H, 316 : 16Cr-12Ni-2Mo, 316L : 16Cr-12Ni-2Mo, 316H : 316Ti : 321 : 18Cr-10Ni-Ti, 321H, 347 : 18Cr-10Ni-Cb(Nb), 347H, 317L, 28Ni-19Cr-Cu-Mo, 22Cr-5Ni-3Mo-N, Super Duplex 2507, Super Duplex F55, Super Austenitic 6Mo, Nickel-Iron Alloy</td>
<td>0.04% min. carbon for temp. >1000°F (538°C)</td>
<td>0.04% min. carbon for temp. >1000°F (538°C)</td>
<td>0.04% min. carbon for temp. >1000°F (538°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service to 600°F (316°C)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service to 600°F (316°C)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service to 1000°F (538°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Service to 600°F (316°C) for N02200, 1200°F (648°C) for N02201</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
<tr>
<td>Nickel-Iron Alloy</td>
<td>Incoloy 800</td>
<td>33Ni-42Fe-21Cr</td>
<td>A494-CUSMCuC*</td>
<td>B64-N088000, B64-N08825*</td>
<td>Service to 600°F (316°C)*</td>
</tr>
<tr>
<td></td>
<td>Incoloy 825</td>
<td>42Ni-21.5Cr-3Mo-2.3Cu</td>
<td>A494-CZ-100*</td>
<td>B160-N02200 (bar)</td>
<td>Service to 600°F (316°C)*</td>
</tr>
<tr>
<td></td>
<td>Monel 400</td>
<td>67Ni-30Cu</td>
<td>A494-M35-1</td>
<td>B64-N04400, B64-N05500*</td>
<td>Service to 600°F (316°C)*</td>
</tr>
<tr>
<td>Nickel</td>
<td>99/95Ni</td>
<td></td>
<td>n/a</td>
<td>904L*</td>
<td>Special grade</td>
</tr>
<tr>
<td>Nickel-Copper</td>
<td>Monel 500</td>
<td>67Ni-30Cu</td>
<td>A494-CY40*</td>
<td>B64-N06600</td>
<td>Special grade</td>
</tr>
<tr>
<td>Titanium</td>
<td>Titanium</td>
<td>98Ti</td>
<td>B367-C2*</td>
<td>B381-Gr2</td>
<td>Special grade</td>
</tr>
<tr>
<td>Nickel Superalloys</td>
<td>Inconel 600</td>
<td>72Ni-15Cr-8Fe</td>
<td>A494-CW-6MC*</td>
<td>B64-N06625</td>
<td>Special grade</td>
</tr>
<tr>
<td></td>
<td>Inconel 625</td>
<td>60Ni-22Cr-9Mo-3.5Cb</td>
<td>A494-CW-2M*</td>
<td>B64-N10276</td>
<td>Special grade</td>
</tr>
<tr>
<td></td>
<td>Hastelloy C-276</td>
<td>54Ni-15Cr-16Mo</td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL GROUP</th>
<th>COMMON NAME</th>
<th>MATERIAL TYPE</th>
<th>CASTING SPEC. EQUIVALENT</th>
<th>FORGING SPEC.</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel-Alloy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
<tr>
<td>Nickel Superalloys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Special grade</td>
</tr>
</tbody>
</table>
Nominal Seating Surface, Stem and Backseat Bushing or Weld-deposit Materials and Hardness

<table>
<thead>
<tr>
<th>Trim Number</th>
<th>Nominal Hardness (HB) Minimum</th>
<th>Seat Surface Material Type a</th>
<th>Seat Surface Typical Specifications Grade</th>
<th>Material Type b</th>
<th>Typical Specifications Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F6</td>
<td>NA</td>
<td>Cast</td>
<td>25Cr-20Ni</td>
<td>ASTM A276-T310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded m</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>2</td>
<td>304</td>
<td>NA</td>
<td></td>
<td>25Cr-20Ni</td>
<td>ASTM A276-T410 or T420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>3</td>
<td>F310</td>
<td>Note d</td>
<td>25Cr-20Ni</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard 13Cr</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>4</td>
<td>Hard F6</td>
<td>750</td>
<td>25Cr-20Ni</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard 13Cr</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>5</td>
<td>Hardfaced</td>
<td>350</td>
<td>Co-Cr A³</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>6</td>
<td>F6 and Cu-Ni</td>
<td>250</td>
<td>13Cr</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu-Ni</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>7</td>
<td>F6 and Hard F6</td>
<td>250</td>
<td>13Cr</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard 13Cr</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>8</td>
<td>F6 and Hardfaced</td>
<td>250</td>
<td>13Cr</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Co-Cr A³</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>8A</td>
<td>F6 and Hardfaced</td>
<td>250</td>
<td>13Cr</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Co-Cr A³</td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>9</td>
<td>Monel TM *</td>
<td>Note d</td>
<td>Ni-Cr</td>
<td>13Cr</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>10</td>
<td>316</td>
<td>Note d</td>
<td>18Cr-8Ni</td>
<td>18Cr-8Ni-Mo</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>11</td>
<td>Monel TM * and Hardfaced</td>
<td>350</td>
<td>Ni-Cu Alloy</td>
<td>18Cr-8Ni-Mo</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>12</td>
<td>316 and Hardfaced</td>
<td>350</td>
<td>Ni-Cu Alloy</td>
<td>18Cr-8Ni-Mo</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>13</td>
<td>Alloy 20</td>
<td>350</td>
<td>Ni-Cu Alloy</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>14</td>
<td>Alloy 20 and Hardfaced</td>
<td>350</td>
<td>Ni-Cu Alloy</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>15</td>
<td>Hardfaced</td>
<td>350</td>
<td>Ni-Cu Alloy</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>16</td>
<td>Hardfaced</td>
<td>350</td>
<td>Co-Cr A³</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>17</td>
<td>Hardfaced</td>
<td>350</td>
<td>Co-Cr A³</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note d</td>
</tr>
<tr>
<td>18</td>
<td>Hardfaced</td>
<td>350</td>
<td>Co-Cr A³</td>
<td>19Cr-29Ni</td>
<td>Note d</td>
</tr>
</tbody>
</table>

Note: a Trim Number 1 IS OBSOLETE
Note d Trim Number 2 IS OBSOLETE
Trim 5 or 5A
MFG Standard
See Trim 5 or 5A
Note e
Note f
Note g
Note h
Note i
Note j
Note k
Note l
Note m
Note n
Note o
Note p
Note q
Note r
Note s
Note t
Note u
Note v
Note w
Note x
Note y
Note z

Legend:
- **Trim Number:** The specific trim number used for seating surface materials.
- **Nominal Hardness (HB):** The minimum hardness required for seating surface materials.
- **Seat Surface Material Type:** Indicates the type of material used for the seating surface.
- **Seat Surface Typical Specifications Grade:** Details the typical specifications for seating surface materials.
- **Material Type:** The type of material used for stem/bushing or weld-deposit.
- **Typical Specifications Type:** Details the typical specifications for stem/bushing or weld-deposit materials.
- **Stem Hardness:** The hardness requirements for stem materials.
- **Backseat Bushing Hardness:** The hardness requirements for backseat bushing materials.
Nominal Seating Surface, Stem and Backseat Bushing or Weld-deposit Materials and Hardness

<table>
<thead>
<tr>
<th>Trim Number</th>
<th>Nominal Seat Surface Hardness (HB) Minimum</th>
<th>Seat Surface Material Type</th>
<th>Seat Surface Typical Specifications Grade</th>
<th>Stem/Bushing Material Type</th>
<th>Stem Hardness (HB)</th>
<th>Backseat Bushing Hardness (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Nickel ¹ and Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19A</td>
<td>Alloy 625</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19B</td>
<td>Alloy C276</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19C</td>
<td>Alloy 825</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Nickel ¹ and Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20A</td>
<td>Alloy 625 and Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20B</td>
<td>Alloy C276 and Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20C</td>
<td>Alloy 825 and Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Hardfaced</td>
<td>Ni Alloy</td>
<td>MFG Standard ¹</td>
<td>Ni Alloy ¹</td>
<td>Note d</td>
<td>Note n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forged</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Welded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFG Standard ¹</td>
<td>MFG Standard ¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

- **Cr = Chromium; Ni = Nickel; Co = Cobalt; Cu = Copper; NA = Not Applicable.**
- **1.** Trim materials, including stem and base material for HF trim items, shall have a corrosion resistance and temperature limit at least equal to the valve body’s corrosion resistance and pressure temperature rating.
- **a.** HB (formerly BHN) is the symbol for the Brinell hardness per ASTM E10.
- **b.** Free machining grades of 13Cr are prohibited.
- **c.** Body and disc seat surfaces should be 250 HB minimum with a 50 HB minimum differential between the body and disc seat surfaces.
- **d.** Manufacturer’s standard hardness.
- **e.** Differential hardness between the body and disc seat surfaces is not required.
- **f.** Case hardness by nitriding to a thickness of 0.13 mm (0.005 in.) minimum.
- **g.** AWS A5.13 ECoCr-A or AWS A5.21 ERCoCr-A: This classification includes such trademark materials as Stellite 6™ *, Stoody 6™ * and Wallex 6™ *. For Plasma Transfer Arc Welding (PTAW) process powder with the metallurgy equivalent to UNS R30006 can also be used. CoCr-E (Stellite 21™ * or equal) may be used only with purchaser approval and typical CoCr-E alloys include AWS A5.13 ECoCr-E or AWS A5.21 ERCoCr-E.
- **h.** Manufacturer’s standard hardfacing with a maximum iron content of 25 %.
- **i.** Hardness differential between the body and disc seat surfaces shall be the manufacturer’s standard.
- **j.** Not used.
- **k.** Manufacturer’s standard with 30 Ni minimum.
- **l.** Not used.
- **m.** Typical backseat weld deposit material.
- **n.** Per manufacturer’s standard if not hardfaced, 250 HB minimum if hardfaced.
- *** This term is used as an example only, and does not constitute an endorsement of this product by API.**

[Table continued...]

We have had this concept in mind since our inception in 1967, as the valve division of Babcock Wilcox Española. We have always understood that the world’s leading industries cannot stop operating due to a failed element in their production systems.

That’s why we design our valves to last longer, and to be problem-free: so you can forget about them. Because we can imagine the consequences should it be necessary to take a water plant offline, or a gas pipe, due to a technical fault. Or the consequences of any downtime for the power generation industry.

This is why we believe we are still trusted by so many of our initial customers, and the reason why we have over 1.200.000 valves installed in leading companies around the world. We are mainly present in the following sectors: Power Generation (Nuclear and Conventional), Petrochemical Industry, Oil & Gas, Chemical, Fertilizer, at water treatment plants, etc. Our constant focus on quality is the foundation of our work. Our position as leaders in our sector is backed up by our Design Department that, together with the R+D+I centre, provides solutions to all of our customers’ requirements. Our highly qualified workforce constantly strives for improvement and maintains a service ethos in meeting our customers’ needs.

This brochure contains the most representative items in our range of valves. However, modern techniques and customer requirements continuously impose material and design challenges, and we can therefore work to any specifications not covered in this catalogue.